NPU RGBD Dataset and a Feature-Enhanced LSTM-DGCN Method for Action Recognition of Basketball Players+

Author:

Ma Chunyan,Fan Ji,Yao Jinghao,Zhang Tao

Abstract

Computer vision-based action recognition of basketball players in basketball training and competition has gradually become a research hotspot. However, owing to the complex technical action, diverse background, and limb occlusion, it remains a challenging task without effective solutions or public dataset benchmarks. In this study, we defined 32 kinds of atomic actions covering most of the complex actions for basketball players and built the dataset NPU RGB+D (a large scale dataset of basketball action recognition with RGB image data and Depth data captured in Northwestern Polytechnical University) for 12 kinds of actions of 10 professional basketball players with 2169 RGB+D videos and 75 thousand frames, including RGB frame sequences, depth maps, and skeleton coordinates. Through extracting the spatial features of the distances and angles between the joint points of basketball players, we created a new feature-enhanced skeleton-based method called LSTM-DGCN for basketball player action recognition based on the deep graph convolutional network (DGCN) and long short-term memory (LSTM) methods. Many advanced action recognition methods were evaluated on our dataset and compared with our proposed method. The experimental results show that the NPU RGB+D dataset is very competitive with the current action recognition algorithms and that our LSTM-DGCN outperforms the state-of-the-art action recognition methods in various evaluation criteria on our dataset. Our action classifications and this NPU RGB+D dataset are valuable for basketball player action recognition techniques. The feature-enhanced LSTM-DGCN has a more accurate action recognition effect, which improves the motion expression ability of the skeleton data.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3