Abstract
Working environment of mobile robots has gradually expanded from indoor structured scenes to outdoor scenes such as wild areas in recent years. The expansion of application scene, change of sensors and the diversity of working tasks bring greater challenges and higher demands to active localization for mobile robots. The efficiency and stability of traditional localization strategies in wild environments are significantly reduced. On the basis of considering features of the environment and the robot motion curved surface, this paper proposes a curve-localizability-SVM active localization algorithm. Firstly, we present a curve-localizability-index based on 3D observation model, and then based on this index, a curve-localizability-SVM path planning strategy and an improved active localization method are proposed. Obtained by setting the constraint space and objective function of the planning algorithm, where curve-localizability is the main constraint, the path helps improve the convergence speed and stability in complex environments of the active localization algorithm. Helped by SVM, the path is smoother and safer for large robots. The algorithm was tested by comparative experiments and analysis in real environment and robot platform, which verified the improvement of efficiency and stability of the new strategy.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference25 articles.
1. Segmatch: Segment based loop-closure for 3d point clouds;Dubé;arXiv,2016
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献