Comparison of the Shear Modulus of an Offshore Elastomeric Bearing between Numerical Simulation and Experiment

Author:

Han DongseopORCID,Che Wooseong

Abstract

The most important item when indicating the mechanical properties of offshore elastomeric bearings is the shear modulus, and the method of measuring this is shown in EN 1337-3, a regulation related to offshore elastomeric bearings. In this work, we conducted an experimental and numerical study on an offshore elastomeric bearing to find its shear modulus. Shear modulus tests were conducted according to the procedure specified in EN 1337-3 Annex F, while simulations were performed using the finite element analysis (FEA) software, ANSYS. The main objective of this research work is to determine optimum analysis conditions for the simulation method that considers a nonlinear model for the elastomer material and predicts the experimental results accurately. We considered the Mooney–Rivlin (M-R) model that has two-parameter (2P), five-parameter (5P), and nine-parameter (9P) forms, depending on the number of terms in the series. We observed that the load-displacement graph is linear, and the percentage error between the results obtained with 2P and 5P M-R models is around 2.23% in the compression and 0.38% in the shear. The simulation results from 2P M-R model showed a good agreement with the experimental results with the correlation coefficient (R2) being 0.999 with an average error of about 2%. However, the deviation between the experimental and simulation results from the 9P M-R model is very high, with about 7%. Based on this study, we can say that the 2P M-R model can accurately predict the nonlinear behavior of hyperelastic material used in elastomer bearing. In addition, the shear modulus of elastic bearings for Class 3 Shore hardness was verified by comparing the numerical simulation values with those presented in EN 1337-3 Annex D.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3