Enhancement of Heterogeneous Microfluidic Immunosensors Using New Sensing Area Shape with Electrothermal Effect

Author:

Echouchene Fraj,Al-shahrani Thamraa,Belmabrouk HafedhORCID

Abstract

In heterogeneous microfluidic immunosensors, the diffusion boundary layer produced on the sensing area represents a critical factor that limits the biosensor performance. A three-dimensional simulation using the finite element method on the binding reaction kinetics of C-reactive protein (CRP) has been performed. We present a new microfluidic biosensor based on a novel reaction-surface design without and with electrothermal force. Two reaction surface configurations were studied. The kinetic reaction rate was calculated with coupled Navier−Stokes, mass diffusion, energy, and Laplace equations. The numerical results reveal that the characteristics of a microfluidic biosensor are more enhanced by using the circular ring design of the sensing area coupled with the electrothermal force. The rate of initial slope related to the association phase is multiplied by a factor 2 when the voltage is increased from 10 to 15 V. The results prove to be valuable in designing new microfluidic biosensors.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3