Construction of Apple Leaf Diseases Identification Networks Based on Xception Fused by SE Module

Author:

Chao XiaofeiORCID,Hu Xiao,Feng Jingze,Zhang Zhao,Wang Meili,He DongjianORCID

Abstract

The fast and accurate identification of apple leaf diseases is beneficial for disease control and management of apple orchards. An improved network for apple leaf disease classification and a lightweight model for mobile terminal usage was designed in this paper. First, we proposed SE-DEEP block to fuse the Squeeze-and-Excitation (SE) module with the Xception network to get the SE_Xception network, where the SE module is inserted between the depth-wise convolution and point-wise convolution of the depth-wise separable convolution layer. Therefore, the feature channels from the lower layers could be directly weighted, which made the model more sensitive to the principal features of the classification task. Second, we designed a lightweight network, named SE_miniXception, by reducing the depth and width of SE_Xception. Experimental results show that the average classification accuracy of SE_Xception is 99.40%, which is 1.99% higher than Xception. The average classification accuracy of SE_miniXception is 97.01%, which is 1.60% and 1.22% higher than MobileNetV1 and ShuffleNet, respectively, while its number of parameters is less than those of MobileNet and ShuffleNet. The minimized network decreases the memory usage and FLOPs, and accelerates the recognition speed from 15 to 7 milliseconds per image. Our proposed SE-DEEP block provides a choice for improving network accuracy and our network compression scheme provides ideas to lightweight existing networks.

Funder

Key Research and Development Program of Shaanxi Province of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3