Application of Geological Mapping Using Airborne-Based LiDAR DEM to Tunnel Engineering: Example of Dongao Tunnel in Northeastern Taiwan

Author:

Lo Pai-ChiaoORCID,Lo Wei,Wang Tai-Tien,Hsieh Yu-ChungORCID

Abstract

The use of digital elevation models (DEMs) that use airborne-based light detection and the ranging technique (airborne-based LiDAR) to understand large-scale geological structures has become important in geological surveying and mapping. Taking the Dongao Tunnel area in northeastern Taiwan as the study area, this study used the airborne-based LiDAR DEM and related value-added maps to interpret the topographic and geomorphic features of the area and identify locations for geological investigation. The characteristics of the rock mass were observed on-site and revealed by excavation of the highway tunnel in the study area; they were compared with the interpreted topographic and geomorphic features to determine the potential of using 1 m-resolution LiDAR DEM in geological surveys and in the evaluation of engineering characteristics of underground rock masses. The results of this study demonstrated that the DEM accurately captured geomorphic features: the strata composed of slate and schist had distinct appearances in both the clinometric map and the hillshade map; the locations of faults, lineaments, and drainage were consistent with those observed on-site, and the positions of these features were captured more accurately than those on conventional maps. Evident microrelief features, including the distribution of scarps, erosion gullies, and mini-drainage systems provide an effective basis for interpreting a deep-seated gravitational deformation slope and for an on-site inspection for validation. The use of high-resolution LiDAR DEM to interpret geomorphic features along with geological surveys provides a more comprehensive understanding of the survey area, supporting surveys and geological mapping, revealing the locations of potential slope failures, and enabling the assessment of tunnel engineering risks.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3