Improving the Dyeability and Anti-Wrinkle Properties of Cotton Fabric via Oxidized Raffinose

Author:

Lou Jiangfei,Zhang Jinfang,Wang Dan,Fan Xuerong

Abstract

In the anti-wrinkle finishing of cotton fabrics, the decreased dyeability of the finished fabrics has always been a difficult problem. A new anti-wrinkle finishing mode was developed to solve this problem by changing the finishing sequence of fabric dyeing and anti-wrinkle. In this research, the partial oxidization of raffinose with sodium periodate generated multiple aldehydes, which acted as multifunctional cross-linkers and endowed cotton fabrics with anti-wrinkle and hydrophilic properties. The structural characteristics of oxyRa were analyzed by FTIR and 13C-NMR. Through response surface methodology (RSM), the finishing model of oxyRa was established from the influencing factors of catalyst concentration, pH, curing temperature and time, and the optimized finishing process: the catalyst concentration was 20.12 g/L, pH was 4.32, curing temperature was 150 °C and curing time was 120 s. Under this condition, the predicted wrinkle recovery angle (WRA) of the finished fabric was up to 249.76°, Tensile strength (TS) was 75.62%, Whiteness index (WI) was 70.69. Importantly, comparing the anti-wrinkle and dyeing performance of the fabric with anti-wrinkle and then dyeing and anti-wrinkle after dyeing, the oxyRa-treated fabrics showed better dyeing properties compared with previously reported dimethyldihydroxyethylene urea (DMDHEU), glutaraldehyde (GA), and 1,2,3,4-butanetetracarboxylic acid (BTCA). Analysis of the combined mechanism of different finishing agents and cellulose, demonstrated the reason why oxyRa can be used to change the order of dyeing and anti-wrinkle finishing.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3