Bearing Anomaly Recognition Using an Intelligent Digital Twin Integrated with Machine Learning

Author:

Piltan FarzinORCID,Kim Jong-MyonORCID

Abstract

In this study, the application of an intelligent digital twin integrated with machine learning for bearing anomaly detection and crack size identification will be observed. The intelligent digital twin has two main sections: signal approximation and intelligent signal estimation. The mathematical vibration bearing signal approximation is integrated with machine learning-based signal approximation to approximate the bearing vibration signal in normal conditions. After that, the combination of the Kalman filter, high-order variable structure technique, and adaptive neural-fuzzy technique is integrated with the proposed signal approximation technique to design an intelligent digital twin. Next, the residual signals will be generated using the proposed intelligent digital twin and the original RAW signals. The machine learning approach will be integrated with the proposed intelligent digital twin for the classification of the bearing anomaly and crack sizes. The Case Western Reserve University bearing dataset is used to test the impact of the proposed scheme. Regarding the experimental results, the average accuracy for the bearing fault pattern recognition and crack size identification will be, respectively, 99.5% and 99.6%.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3