Supplementation of Ex-Situ Biofloc to Improve Growth Performance and Enhance Nutritional Values of the Pacific White Shrimp Rearing at Low Salinity Conditions

Author:

Uawisetwathana UmapornORCID,Situmorang Magdalena LennyORCID,Arayamethakorn Sopacha,Haniswita ,Suantika Gede,Panya AtikornORCID,Karoonuthaisiri Nitsara,Rungrassamee WaniladaORCID

Abstract

Shrimp is an important food source consumed worldwide. An intensive aquaculture system with overuse of feed in combination with detrimental effects from climate change are serious problems leading to mass mortality of cultured shrimp. Biofloc technology is an approach to managing water quality and controlling the disease to counter the negative side of intensive culture system; however, most of the biofloc applications are naturally formed, which could be inconsistent. In this study, we employed an established optimal ratio of microbial consortium called “ex-situ biofloc (BF)” to be used as a feed supplement in shrimp cultured in a zero-water discharged system at low salinity conditions. Three feeding groups (100%commercial pellet (C), 95%C+BF, 90%C+BF) of shrimp were cultured for six weeks. The effect of an ex-situ biofloc supplement with commercial pellet reduction showed that levels of ammonium, nitrite, nitrate and phosphate were significantly decreased in water culture. Shrimp fed with ex-situ biofloc supplement with commercial pellet reduction exhibited significantly increased shrimp weight and survival, and significantly expressed growth-related genes involving lipolysis and energy metabolism higher than those fed with 100% commercial pellet. Nutritional analysis indicated a significant increase of docosahexaenoic acid (DHA) and eicosenoic acid (C20:1) concentrations in the ex-situ biofloc supplemented shrimp. This finding revealed the potential of ex-situ biofloc to manage water quality, improve shrimp growth performance and enhance shrimp nutritional value under intensive culture at low salinity conditions. The beneficial effects of the ex-situ biofloc in shrimp culture system make it a promising alternative strategy to mitigate climate change effects leading to the sustainable production of high-quality shrimp in the future.

Funder

International Foundation for Science

National Center for Genetic Engineering and Biotechnology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3