Convergency and Stability of Explicit and Implicit Schemes in the Simulation of the Heat Equation

Author:

Suárez-Carreño FranyelitORCID,Rosales-Romero Luis

Abstract

Some strategies for solving differential equations based on the finite difference method are presented: forward time centered space (FTSC), backward time centered space (BTSC), and the Crank-Nicolson scheme (CN). These are developed and applied to a simple problem involving the one-dimensional (1D) (one spatial and one temporal dimension) heat equation in a thin bar. The numerical implementation in this work can be used as a preamble to introduce a method of solving the heat equation that can be implemented in problems in the area of finances. The results of implementing the software on very fine meshes (unidimensional), and with relatively small-time steps, are shown. Through mesh refinement, it was possible to obtain a better temperature distribution in the thin bar between a range of points. The heat equation was solved numerically by testing both implicit (CN) and explicit (FTSC and BTSC) methods. The examples show that the implemented schemes conform to theoretical predictions and that truncation errors depend on mesh, spacing, and time step.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Numerical Methods for Partial Differential Equations;Ames,1992

2. Numerical Solution of Partial Differential Equations and Code;Olsen-Kettle,2011

3. Comparison of Explicit and Implicit Finite Difference Schemes on Diffusion Equation;Adak,2018

4. Introductin to Partial Differential Equations with Matlab;Cooper,1998

5. Aspectos computacionales del método de diferencias finitas para la ecuación de calor dependiente del tiempo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3