Low-Complexity Pupil Tracking for Sunglasses-Wearing Faces for Glasses-Free 3D HUDs

Author:

Kang DongwooORCID,Chang Hyun SungORCID

Abstract

This study proposes a pupil-tracking method applicable to drivers both with and without sunglasses on, which has greater compatibility with augmented reality (AR) three-dimensional (3D) head-up displays (HUDs). Performing real-time pupil localization and tracking is complicated by drivers wearing facial accessories such as masks, caps, or sunglasses. The proposed method fulfills two key requirements: low complexity and algorithm performance. Our system assesses both bare and sunglasses-wearing faces by first classifying images according to these modes and then assigning the appropriate eye tracker. For bare faces with unobstructed eyes, we applied our previous regression-algorithm-based method that uses scale-invariant feature transform features. For eyes occluded by sunglasses, we propose an eye position estimation method: our eye tracker uses nonoccluded face area tracking and a supervised regression-based pupil position estimation method to locate pupil centers. Experiments showed that the proposed method achieved high accuracy and speed, with a precision error of <10 mm in <5 ms for bare and sunglasses-wearing faces for both a 2.5 GHz CPU and a commercial 2.0 GHz CPU vehicle-embedded system. Coupled with its performance, the low CPU consumption (10%) demonstrated by the proposed algorithm highlights its promise for implementation in AR 3D HUD systems.

Funder

Hongik University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Event Camera-Based Pupil Localization: Facilitating Training With Event-Style Translation of RGB Faces;IEEE Access;2023

2. Autostereoscopic 3D Display System for 3D Medical Images;Applied Sciences;2022-04-24

3. Fast Pupil center localization system based on SSD Cascade gradient;2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS);2021-12-06

4. Masked Face Recognition Using Deep Learning: A Review;Electronics;2021-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3