Recognition of Customers’ Impulsivity from Behavioral Patterns in Virtual Reality

Author:

Moghaddasi MasoudORCID,Marín-Morales JavierORCID,Khatri JaikishanORCID,Guixeres Jaime,Chicchi Giglioli Irene AliceORCID,Alcañiz MarianoORCID

Abstract

Virtual reality (VR) in retailing (V-commerce) has been proven to enhance the consumer experience. Thus, this technology is beneficial to study behavioral patterns by offering the opportunity to infer customers’ personality traits based on their behavior. This study aims to recognize impulsivity using behavioral patterns. For this goal, 60 subjects performed three tasks—one exploration task and two planned tasks—in a virtual market. Four noninvasive signals (eye-tracking, navigation, posture, and interactions), which are available in commercial VR devices, were recorded, and a set of features were extracted and categorized into zonal, general, kinematic, temporal, and spatial types. They were input into a support vector machine classifier to recognize the impulsivity of the subjects based on the I-8 questionnaire, achieving an accuracy of 87%. The results suggest that, while the exploration task can reveal general impulsivity, other subscales such as perseverance and sensation-seeking are more related to planned tasks. The results also show that posture and interaction are the most informative signals. Our findings validate the recognition of customer impulsivity using sensors incorporated into commercial VR devices. Such information can provide a personalized shopping experience in future virtual shops.

Funder

European Commission

Generalitat Valenciana

The European Regional Development Fund program of the Valencian Community

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3