Deep Learning with Discriminative Margin Loss for Cross-Domain Consumer-to-Shop Clothes Retrieval

Author:

Alirezazadeh Pendar,Dornaika FadiORCID,Moujahid Abdelmalik

Abstract

Consumer-to-shop clothes retrieval refers to the problem of matching photos taken by customers with their counterparts in the shop. Due to some problems, such as a large number of clothing categories, different appearances of clothing items due to different camera angles and shooting conditions, different background environments, and different body postures, the retrieval accuracy of traditional consumer-to-shop models is always low. With advances in convolutional neural networks (CNNs), the accuracy of garment retrieval has been significantly improved. Most approaches addressing this problem use single CNNs in conjunction with a softmax loss function to extract discriminative features. In the fashion domain, negative pairs can have small or large visual differences that make it difficult to minimize intraclass variance and maximize interclass variance with softmax. Margin-based softmax losses such as Additive Margin-Softmax (aka CosFace) improve the discriminative power of the original softmax loss, but since they consider the same margin for the positive and negative pairs, they are not suitable for cross-domain fashion search. In this work, we introduce the cross-domain discriminative margin loss (DML) to deal with the large variability of negative pairs in fashion. DML learns two different margins for positive and negative pairs such that the negative margin is larger than the positive margin, which provides stronger intraclass reduction for negative pairs. The experiments conducted on publicly available fashion datasets DARN and two benchmarks of the DeepFashion dataset—(1) Consumer-to-Shop Clothes Retrieval and (2) InShop Clothes Retrieval—confirm that the proposed loss function not only outperforms the existing loss functions but also achieves the best performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Fast cross-scenario clothing retrieval based on indexing deep features;Li,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3