pH-Responsive Cellulose/Silk/Fe3O4 Hydrogel Microbeads Designed for Biomedical Applications

Author:

Weon Seung Hyeon1,Na Yuhyeon1,Han Jiwoo1,Lee Jeong Woo1,Kim Hyung Joo1ORCID,Park Saerom1,Lee Sang Hyun1ORCID

Affiliation:

1. Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea

Abstract

In this study, cellulose/Fe3O4 hydrogel microbeads were prepared through the sol–gel transition of a solvent-in-oil emulsion using various cellulose-dissolving solvents and soybean oil without surfactants. Particularly, 40% tetrabutylammonium hydroxide (TBAH) and 40% tetrabutylphosphonium hydroxide (TBPH) dissolved cellulose at room temperature and effectively dispersed Fe3O4, forming cellulose/Fe3O4 microbeads with an average diameter of ~15 µm. Additionally, these solvents co-dissolved cellulose and silk, allowing for the manufacture of cellulose/silk/Fe3O4 hydrogel microbeads with altered surface characteristics. Owing to the negatively charged surface characteristics, the adsorption capacity of the cellulose/silk/Fe3O4 microbeads for the cationic dye crystal violet was >10 times higher than that of the cellulose/Fe3O4 microbeads. When prepared with TBAH, the initial adsorption rate of bovine serum albumin (BSA) on the cellulose/silk/Fe3O4 microbeads was 18.1 times higher than that on the cellulose/Fe3O4 microbeads. When preparing TBPH, the equilibrium adsorption capacity of the cellulose/silk/Fe3O4 microbeads for BSA (1.6 g/g) was 8.5 times higher than that of the cellulose/Fe3O4 microbeads. The pH-dependent BSA release from the cellulose/silk/Fe3O4 microbeads prepared with TBPH revealed 6.1-fold slower initial desorption rates and 5.2-fold lower desorption amounts at pH 2.2 than those at pH 7.4. Cytotoxicity tests on the cellulose and cellulose/silk composites regenerated with TBAH and TBPH yielded nontoxic results. Therefore, cellulose/silk/Fe3O4 microbeads are considered suitable pH-responsive supports for orally administered protein pharmaceuticals.

Funder

Ministry of Oceans and Fisheries

Ministry of Food and Drug Safety

Korean government (MSIT

Ministry of SMEs and Startups

LCA Expert Training Graduate Program for Knowledge-Based Environmental Services of the Ministry of Environment, Korea

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3