Design Optimization of Productive Façades: Integrating Photovoltaic and Farming Systems at the Tropical Technologies Laboratory

Author:

Tablada AbelORCID,Kosorić Vesna,Huang Huajing,Chaplin Ian,Lau Siu-Kit,Yuan Chao,Lau Stephen

Abstract

Singapore’s high dependence on imported energy and food resources, and the lack of available land requires an efficient use of the built environment in order to increase energy and food autonomy. This paper proposes the concept of a productive façade (PF) system that integrates photovoltaic (PV) modules as shading devices as well as farming planters. It also outlines the design optimization process for eight PF prototypes comprising two categories of PF systems: Window façade and balcony façade, for four orientations. Five criteria functions describing the potential energy and food production as well as indoor visual and thermal performance were assessed by a parametric modelling tool. Optimal PF prototypes were subsequently obtained through the VIKOR optimization method, which selects the optimal design variants by compromising between the five criteria functions. East and West-facing façades require greater solar protection, and most façades require high-tilt angles on their shading PV panels. The optimal arrangement for vegetable planters involves two planters located relatively low with regard to the railing or window sill. Finally, the optimal façade designs were adjusted according to the availability of resources and the conditions and context of the Tropical Technologies Laboratory (T2 Lab) in Singapore where they are installed.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference74 articles.

1. Singapore’s Intended Nationally Determined Contribution (INDC) and Accompanying Informationhttp://www4.unfccc.int/ndcregistry/PublishedDocuments/Singapore%20First/Singapore%20INDC.pdf

2. Which Country Is the World’s Most Densely Populated?https://www.worldatlas.com/articles/most-densely-populated-countries-in-the-world.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3