Magnetically Actuated Transport Pipeline with Self-Perception

Author:

Shu Quan12,Ge Shaolin1,Li Yanfang1,Xuan Shouhu12

Affiliation:

1. Research Center of Tobacco and Health, USTC Anhui Tobacco Joint Lab Tobacco Chemistry, CAS University of Science and Technology of China (USTC), Hefei 230052, China

2. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei 230027, China

Abstract

Soft transportation devices with high flexibility, good stability, and quick controllability have attracted increasing attention. However, a smart soft transportation device with tactile perception and a non-contact actuating mode remains a challenge. This work reports a magnetic soft pipeline (MSP) composed of sensor film, a magnetorheological elastomer (MRE) cavity pipeline, and heater film, which can not only respond well to tactile compression stimuli but also be transported by magnetic actuation. Notably, the sensor film was integrated on the upper surface of an MRE pipeline, and the relative resistance change (∆R/R0) of the MSP was maintained at 55.8% under 2.2 mm compression displacement during 4000 loading cycles. Moreover, the heater film was integrated on the lower surface of the MRE pipeline, which endows the MSP with an electrothermal heating characteristic. The temperature of the MSP can be increased from 26.7 °C to 38.1 °C within 1 min under 0.6 V. Furthermore, the MSP was attracted and deformed under the magnetic field, and the ∆R/R0 of the MSP reached 69.1% under application of a 165 mT magnetic field density. Benefiting from the excellent perception and magnetic deformation performances, the magnetic actuate transportation of the MSP with self-sensing was successfully achieved. This multi-functional soft pipeline integrated with in situ self-sensing, electrothermal heating, and non-contact magnetic actuating transportation performance possess high potential in smart flexible electronic devices.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3