Image-Based Visual Servoing for Three Degree-of-Freedom Robotic Arm with Actuator Faults

Author:

Li Jiashuai1,Peng Xiuyan1,Li Bing1ORCID,Li Mingze1,Wu Jiawei1

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Nantong Street, Harbin 150001, China

Abstract

This study presents a novel image-based visual servoing fault-tolerant control strategy aimed at ensuring the successful completion of visual servoing tasks despite the presence of robotic arm actuator faults. Initially, a depth-independent image-based visual servoing model is established to mitigate the effects of inaccurate camera parameters and missing depth information on the system. Additionally, a robotic arm dynamic model is constructed, which simultaneously considers both multiplicative and additive actuator faults. Subsequently, model uncertainties, unknown disturbances, and coupled actuator faults are consolidated as centralized uncertainties, and an iterative learning fault observer is designed to estimate them. Based on this, suitable sliding surfaces and control laws are developed within the super-twisting sliding mode visual servo controller to rapidly reduce control deviation to near zero and circumvent the chattering phenomenon typically observed in traditional sliding mode control. Finally, through comparative simulation between different control strategies, the proposed method is shown to effectively counteract the effect of actuator faults and exhibit robust performance.

Funder

Fundamental Strengthening Program Technical Field Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3