Altitudinal Heterogeneity of UV Adaptation in Phytophthorainfestans Is Associated with the Spatial Distribution of a DNA Repair Gene

Author:

Wang Yan-Ping,Waheed Abdul,Liu Shi-Ting,Li Wen-Yang,Nkurikiyimfura Oswald,Lurwanu Yahuza,Wang ZonghuaORCID,Grenville-Briggs Laura J.ORCID,Yang Lina,Zheng Luping,Zhan JiasuiORCID

Abstract

Climate change is considered a major threat to society and nature. UV irradiation is the most important environmental genotoxic agent. Thus, how elevated UV irradiation may influence human health and ecosystems has generated wide concern in the scientific community, as well as with policy makers and the public in general. In this study, we investigated patterns and mechanisms of UV adaptation in natural ecosystems by studying a gene-specific variation in the potato late blight pathogen, Phytophthora infestans. We compared the sequence characteristics of radiation sensitive 23 (RAD23), a gene involved in the nucleotide excision repair (NER) pathway and UV tolerance, in P. infestans isolates sampled from various altitudes. We found that lower genetic variation in the RAD23 gene was caused by natural selection. The hypothesis that UV irradiation drives this selection was supported by strong correlations between the genomic characteristics and altitudinal origin (historic UV irradiation) of the RAD23 sequences with UV tolerance of the P. infestans isolates. These results indicate that the RAD23 gene plays an important role in the adaptation of P. infestans to UV stress. We also found that different climatic factors could work synergistically to determine the evolutionary adaptation of species, making the influence of climate change on ecological functions and resilience more difficult to predict. Future attention should aim at understanding the collective impact generated by simultaneous change in several climate factors on species adaptation and ecological sustainability, using state of the art technologies such as experimental evolution, genome-wide scanning, and proteomics.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3