Comparison of Supervised Learning Algorithms on a 5G Dataset Reduced via Principal Component Analysis (PCA)

Author:

Gonzalez-Franco Joan D.1ORCID,Preciado-Velasco Jorge E.1ORCID,Lozano-Rizk Jose E.2ORCID,Rivera-Rodriguez Raul2ORCID,Torres-Rodriguez Jorge3,Alonso-Arevalo Miguel A.1ORCID

Affiliation:

1. Department of Electronics and Telecommunications, CICESE Research Center, Carretera Ensenada-Tijuana 3918, Playitas, Ensenada 22860, BC, Mexico

2. Division of Telematics, CICESE Research Center, Carretera Ensenada-Tijuana 3918, Playitas, Ensenada 22860, BC, Mexico

3. Department of Computational Science, CICESE Research Center, Carretera Ensenada-Tijuana 3918, Playitas, Ensenada 22860, BC, Mexico

Abstract

Improving the quality of service (QoS) and meeting service level agreements (SLAs) are critical objectives in next-generation networks. This article presents a study on applying supervised learning (SL) algorithms in a 5G/B5G service dataset after being subjected to a principal component analysis (PCA). The study objective is to evaluate if the reduction of the dimensionality of the dataset via PCA affects the predictive capacity of the SL algorithms. A machine learning (ML) scheme proposed in a previous article used the same algorithms and parameters, which allows for a fair comparison with the results obtained in this work. We searched the best hyperparameters for each SL algorithm, and the simulation results indicate that the support vector machine (SVM) algorithm obtained a precision of 98% and a F1 score of 98.1%. We concluded that the findings of this study hold significance for research in the field of next-generation networks, which involve a wide range of input parameters and can benefit from the application of principal component analysis (PCA) on the performance of QoS and maintaining the SLA.

Funder

Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Baja California (CICESE), Mexico

Consejo Nacional de Humanidades, Ciencias y Tecnologias (CONAHCYT), Mexico

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3