Discrete Phase Shifts of Intelligent Reflecting Surface Systems Considering Network Overhead

Author:

Kim JaehongORCID,Yu HeejungORCID,Kang  XinORCID,Joung  JingonORCID

Abstract

In this study, the performance of intelligent reflecting surfaces (IRSs) with a discrete phase shift strategy is examined in multiple-antenna systems. Considering the IRS network overhead, the achievable rate model is newly designed to evaluate the practical IRS system performance. Finding the optimal resolution of the IRS discrete phase shifts and a corresponding phase shift vector is an NP-hard combinatorial problem with an extremely large search complexity. Recognizing the performance trade-off between the IRS passive beamforming gain and IRS signaling overheads, the incremental search method is proposed to present the optimal resolution of the IRS discrete phase shift. Moreover, two low-complexity sub-algorithms are suggested to obtain the IRS discrete phase shift vector during the incremental search algorithms. The proposed incremental search-based discrete phase shift method can efficiently obtain the optimal resolution of the IRS discrete phase shift that maximizes the overhead-aware achievable rate. Simulation results show that the discrete phase shift with the incremental search method outperforms the conventional analog phase shift by choosing the optimal resolution of the IRS discrete phase shift. Furthermore, the cumulative distribution function comparison shows the superiority of the proposed method over the entire coverage area. Specifically, it is shown that more than 20% of coverage extension can be accomplished by deploying IRS with the proposed method.

Funder

National Research Foundation of Korea(NRF) grant funded by the Korea government

Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea governmen

Chung-Ang University Graduate Research Scholarship

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3