Predicting Bitcoin (BTC) Price in the Context of Economic Theories: A Machine Learning Approach

Author:

Erfanian Sahar,Zhou Yewang,Razzaq AmarORCID,Abbas AzharORCID,Safeer Asif Ali,Li Teng

Abstract

Bitcoin (BTC)—the first cryptocurrency—is a decentralized network used to make private, anonymous, peer-to-peer transactions worldwide, yet there are numerous issues in its pricing due to its arbitrary nature, thus limiting its use due to skepticism among businesses and households. However, there is a vast scope of machine learning approaches to predict future prices precisely. One of the major problems with previous research on BTC price predictions is that they are primarily empirical research lacking sufficient analytical support to back up the claims. Therefore, this study aims to solve the BTC price prediction problem in the context of both macroeconomic and microeconomic theories by applying new machine learning methods. Previous work, however, shows mixed evidence of the superiority of machine learning over statistical analysis and vice versa, so more research is needed. This paper applies comparative approaches, including ordinary least squares (OLS), Ensemble learning, support vector regression (SVR), and multilayer perceptron (MLP), to investigate whether the macroeconomic, microeconomic, technical, and blockchain indicators based on economic theories predict the BTC price or not. The findings point out that some technical indicators are significant short-run BTC price predictors, thus confirming the validity of technical analysis. Moreover, macroeconomic and blockchain indicators are found to be significant long-term predictors, implying that supply, demand, and cost-based pricing theories are the underlying theories of BTC price prediction. Likewise, SVR is found to be superior to other machine learning and traditional models. This research’s innovation is looking at BTC price prediction through theoretical aspects. The overall findings show that SVR is superior to other machine learning models and traditional models. This paper has several contributions. It can contribute to international finance to be used as a reference for setting asset pricing and improved investment decision-making. It also contributes to the economics of BTC price prediction by introducing its theoretical background. Moreover, as the authors still doubt whether machine learning can beat the traditional methods in BTC price prediction, this research contributes to machine learning configuration and helping developers use it as a benchmark.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3