Fungicide-Tolerant Plant Growth-Promoting Rhizobacteria Mitigate Physiological Disruption of White Radish Caused by Fungicides Used in the Field Cultivation

Author:

Khan Sadaf,Shahid MohammadORCID,Khan Mohammad Saghir,Syed Asad,Bahkali Ali H.,Elgorban Abdallah M.ORCID,Pichtel JohnORCID

Abstract

Excessive use of fungicides in agriculture may result in substantial accumulation of active residues in soil, which affect crop health and yield. We investigated the response of Raphanus sativus (white radish) to fungicides in soil and potential beneficial interactions of radish plants with fungicide-tolerant plant growth-promoting rhizobacteria (PGPR). The PGPR were isolated from cabbage and mustard rhizospheres. Morphological and biochemical characteristics measured using standard methods, together with analysis of partial 16S rRNA gene sequences, revealed that fungicide-tolerant PGPR, isolates PS3 and AZ2, were closely related to Pseudomonas spp. These PGPR survived in the presence of high fungicide concentrations i.e., up to 2400 μg mL−1 carbendazim (CBZM) and 3200 μg mL−1 hexaconazole (HEXA). Bacterial isolates produced plant growth stimulants even under fungicide stress, though fungicides induced surface morphological distortion and alteration in membrane permeability of these bacteria, which was proved by a set of microscopic observations. Fungicides considerably affected the germination efficiency, growth, and physiological development of R. sativus, but these effects were relieved when inoculated with PGPR isolates. For instance, CBZM at 1500 mg kg−1 decreased whole dry biomass by 71%, whole plant length by 54%, total chlorophyll by 50%, protein content by 61%, and carotenoid production by 29%. After applying isolate AZ2 for white radish grown in CBZM (10 mg kg−1)-amended soil, it could improve plant growth and development with increased whole plant dry weight (10%), entire plant length (13%) and total chlorophyll content (18%). Similarly, isolate PS3 enhanced plant survival by relieving plant stress with declined biomarkers, i.e., proline (12%), malondialdehyde (3%), ascorbate peroxidase (6.5%), catalase (18%), and glutathione reductase (4%). Application of isolates AZ2 and PS3 could be effective for remediation of fungicide-contaminated soil and for improving the cultivation of radish plants while minimizing inputs of fungicides.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference91 articles.

1. Genetic variability and selection parameters for different genotypes of radish (Raphanus sativus L.) under Kashmir valley;Mallikarjunarao;Ecol. Environ. Conserv.,2015

2. Identification of a New Antibacterial Sulfur Compound fromRaphanus sativusSeeds

3. Effect of triazole compounds on induced changes in growth biomass and biochemical content of white radish (Raphanus sativus L.)

4. Pathogens of root internal discoloration (black heart disease) in radish in Xining City of Qinghai Province, China;Miao;Mycosystema,2018

5. Epiphytology and losses of downy mildew (Peronospora parasitica) of radish (Raphanus sativus) seed crop;Lakra;Indian J. Agric. Sci.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3