Cluster-Based Analysis of Infectious Disease Occurrences Using Tensor Decomposition: A Case Study of South Korea

Author:

Jung Seungwon,Moon Jaeuk,Hwang EenjunORCID

Abstract

For a long time, various epidemics, such as lower respiratory infections and diarrheal diseases, have caused serious social losses and costs. Various methods for analyzing infectious disease occurrences have been proposed for effective prevention and proactive response to reduce such losses and costs. However, the results of the occurrence analyses were limited because numerous factors affect the outbreak of infectious diseases and there are complex interactions between these factors. To alleviate this limitation, we propose a cluster-based analysis scheme of infectious disease occurrences that can discover commonalities or differences between clusters by grouping elements with similar occurrence patterns. To do this, we collect and preprocess infectious disease occurrence data according to time, region, and disease. Then, we construct a tensor for the data and apply Tucker decomposition to extract latent features in the dimensions of time, region, and disease. Based on these latent features, we conduct k-means clustering and analyze the results for each dimension. To demonstrate the effectiveness of this scheme, we conduct a case study on data from South Korea and report some of the results.

Funder

Korea Health Industry Development Institute

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference44 articles.

1. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2016https://www.who.int/healthinfo/global_burden_disease/estimates/en/

2. PEACOCK: A Map-Based Multitype Infectious Disease Outbreak Information System

3. The Impacts on Health, Society, and Economy of SARS and H7N9 Outbreaks in China: A Case Comparison Study

4. On a fractional order Ebola epidemic model

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3