Use of Tracer Elements for Estimating Community Exposure to Marcellus Shale Development Operations

Author:

Nye MayaORCID,Knuckles Travis,Yan Beizhan,Ross James,Orem William,Varonka MatthewORCID,Thurston George,Dzomba Alexandria,McCawley MichaelORCID

Abstract

Since 2009, unconventional natural gas development (UNGD) has significantly increased in Appalachia’s Marcellus Shale formation. Elevations of fine particulate matter <2.5 µm (PM2.5), have been documented in areas surrounding drilling operations during well stimulation. Furthermore, many communities are experiencing increased industrial activities and probable UNGD air pollutant exposures. Recent studies have associated UNGD emissions with health effects based on distances from well pads. In this study, PM2.5 filter samples were collected on an active gas well pad in Morgantown, West Virginia, and three locations downwind during hydraulic stimulation. Fine particulate samples were analyzed for major and trace elements. An experimental source identification model was developed to determine which elements appeared to be traceable downwind of the UNGD site and whether these elements corresponded to PM2.5 measurements. Results suggest that 1) magnesium may be useful for detecting the reach of UNGD point source emissions, 2) complex surface topographic and meteorological conditions in the Marcellus Shale region could be modeled and confounding sources discounted, and 3) well pad emissions may be measurable at distances of at least 7 km. If shown to be more widely applicable, future tracer studies could enhance epidemiological studies showing health effects of UNGD-associated emissions at ≥15 km.

Funder

U.S. Department of Energy

National Institutes of Health

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3