Effect of Molybdenum on Plant Physiology and Cadmium Uptake and Translocation in Rape (Brassica napus L.) under Different Levels of Cadmium Stress

Author:

Han Zhangxiong,Wei Xuan,Wan Dejun,He Wenxiang,Wang Xijie,Xiong Ying

Abstract

This study investigated the beneficial effect of molybdenum (Mo) application on rape plants (Brassica napus L.) grown in a soil polluted by cadmium (Cd). A pot experiment was conducted to determine how different concentrations of exogenous Mo (0, 50, 100, and 200 mg/kg) affect plant physiology, biomass, photosynthesis, cation uptake, and Cd translocation and enrichment in rape plants under Cd stress (0.5 and 6.0 mg/kg). Under single Cd treatment, plant physiological and biochemical parameters, biomass parameters, leaf chlorophyll fluorescence parameters, and macroelement uptake of rape plants decreased, while their malonaldehyde content, proline content, non-photochemical quenching coefficient, and Cd uptake significantly increased, compared to those of the control group (p-values < 0.05). High-Cd treatment resulted in much larger changes in these parameters than low-Cd treatment. Following Mo application, the accumulation of malondialdehyde and proline decreased in the leaves of Cd-stressed plants; reversely, the contents of soluble protein, soluble sugar, and chlorophyll, and the activities of superoxide dismutase and glutathione peroxidase, all increased compared to those of single Cd treatment (p-values < 0.05). Exogenous Mo application promoted shoot and root growth of Cd-stressed plants in terms of their length, fresh weight, and dry weight. The negative effect of Cd stress on leaf chlorophyll fluorescence was substantially mitigated by applying Mo. Exogenous Mo also improved the uptake of inorganic cations, especially potassium (K+), in Cd-stressed plants. After Mo application, Cd uptake and accumulation were inhibited and Cd tolerance was enhanced, but Cd translocation was less affected in Cd-stressed plants. The mitigation effect of Mo on Cd stress in rape was achieved through the immobilization of soil Cd to reduce plant uptake, and improvement of plant physiological properties to enhance Cd tolerance. In conclusion, exogenous Mo can effectively reduce Cd toxicity to rape and the optimal Mo concentration was 100 mg/kg under the experimental conditions.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3