Graphene Oxide–ZnO Nanocomposites for Removal of Aluminum and Copper Ions from Acid Mine Drainage Wastewater

Author:

Rodríguez Carolina,Tapia Camila,Leiva-Aravena Enzo,Leiva EduardoORCID

Abstract

Adsorption technologies are a focus of interest for the removal of pollutants in water treatment systems. These removal methods offer several design, operation and efficiency advantages over other wastewater remediation technologies. Particularly, graphene oxide (GO) has attracted great attention due to its high surface area and its effectiveness in removing heavy metals. In this work, we study the functionalization of GO with zinc oxide nanoparticles (ZnO) to improve the removal capacity of aluminum (Al) and copper (Cu) in acidic waters. Experiments were performed at different pH conditions (with and without pH adjustment). In both cases, decorated GO (GO/ZnO) nanocomposites showed an improvement in the removal capacity compared with non-functionalized GO, even when the pH of zero charge (pHPZC) was higher for GO/ZnO (5.57) than for GO (3.98). In adsorption experiments without pH adjustment, the maximum removal capacities for Al and Cu were 29.1 mg/g and 45.5 mg/g, respectively. The maximum removal percentages of the studied cations (Al and Cu) were higher than 88%. Further, under more acidic conditions (pH 4), the maximum sorption capacities using GO/ZnO as adsorbent were 19.9 mg/g and 33.5 mg/g for Al and Cu, respectively. Moreover, the removal percentages reach 95.6% for Al and 92.9% for Cu. This shows that decoration with ZnO nanoparticles is a good option for improving the sorption capacity of GO for Cu removal and to a lesser extent for Al, even when the pH was not favorable in terms of electrostatic affinity for cations. These findings contribute to a better understanding of the potential and effectiveness of GO functionalization with ZnO nanoparticles to treat acidic waters contaminated with heavy metals and its applicability for wastewater remediation.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3