Spatiotemporal Variations and Factors of Air Quality in Urban Central China during 2013–2015

Author:

Mao Mao,Zhang XiaolinORCID,Shao Yamei,Yin Yan

Abstract

Spatiotemporal behaviors of particulate matter (PM2.5 and PM10) and trace gases (SO2, NO2, CO, and O3) in Hefei during the period from December 2013 to November 2015 are investigated. The mean annual PM2.5 (PM10) concentrations are 89.1 ± 59.4 µg/m3 (118.9 ± 66.8 µg/m3) and 61.6 ± 32.2 µg/m3 (91.3 ± 40.9 µg/m3) during 2014 and 2015, respectively, remarkably exceeding the Chinese Ambient Air Quality Standards (CAAQS) grade II. All trace gases basically meet the requirements though NO2 and O3 have a certain upward trend. Old districts have the highest pollution levels, followed by urban periphery sites and new districts. Severe haze pollution occurs in Hefei, with frequent exceedances in particulate matter with 178 (91) days in 2014 (2015). The abnormal PM2.5 concentrations in June 2014 attributed to agricultural biomass burning from moderate resolution imaging spectroradiometry (MODIS) wildfire maps and aerosol optical depth (AOD) analysis. PM2.5 is recognized as the major pollutant, and a longer interspecies relationship is found between PM2.5 and other criteria pollutants for episode days as compared to non-episode days. The air pollution in Hefei tends to be influenced by local primary emissions, secondary formation, and regional transport from adjacent cities and remote regions. Most areas of Anhui, southern Jiangsu, northern Zhejiang, and western Shandong are identified as the common high-potential source regions of PM2.5. Approximately 9.44 and 8.53 thousand premature mortalities are attributed to PM2.5 exposure in 2014 and 2015. The mortality benefits will be 32% (24%), 47% (41%), 70% (67%), and 85% (83%) of the total premature mortalities in 2014 (2015) when PM2.5 concentrations meet the CAAQS grade II, the World Health Organization (WHO) IT-2, IT-3, and Air Quality Guideline, respectively. Hence, joint pollution prevention and control measures need to be strengthened due to pollutant regional diffusion, and much higher health benefits could be achieved as the Hefei government adopts more stringent WHO guidelines for PM2.5.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3