Acute Kidney Injury Biomarker Responses to Short-Term Heat Acclimation

Author:

Pryor Riana R.,Pryor J. LukeORCID,Vandermark Lesley W.,Adams Elizabeth L.,Brodeur Rachel M.,Schlader Zachary J.ORCID,Armstrong Lawrence E.,Lee Elaine C.,Maresh Carl M.,Casa Douglas J.ORCID

Abstract

The combination of hyperthermia, dehydration, and strenuous exercise can result in severe reductions in kidney function, potentially leading to acute kidney injury (AKI). We sought to determine whether six days of heat acclimation (HA) mitigates the rise in clinical biomarkers of AKI during strenuous exercise in the heat. Twenty men completed two consecutive 2 h bouts of high-intensity exercise in either hot (n = 12, 40 °C, 40% relative humidity) or mild (n = 8, 24 °C, 21% relative humidity) environments before (PreHA) and after (PostHA) 4 days of 90–120 min of exercise per day in a hot or mild environment. Increased clinical biomarkers of AKI (CLINICAL) was defined as a serum creatinine increase ≥0.3 mg·dL−1 or estimated glomerular filtration rate (eGFR) reduction >25%. Creatinine similarly increased in the hot environment PreHA (0.35 ± 0.23 mg·dL−1) and PostHA (0.39 ± 0.20 mg·dL−1), with greater increases than the mild environment at both time points (0.11 ± 0.07 mg·dL−1, 0.08 ± 0.06 mg·dL−1, p ≤ 0.001), respectively. CLINICAL occurred in the hot environment PreHA (n = 9, 75%), with fewer participants with CLINICAL PostHA (n = 7, 58%, p = 0.007), and no participants in the mild environment with CLINICAL at either time point. Percent change in plasma volume was predictive of changes in serum creatinine PostHA and percent changes in eGFR both PreHA and PostHA. HA did not mitigate reductions in eGFR nor increases in serum creatinine during high-intensity exercise in the heat, although the number of participants with CLINICAL was reduced PostHA.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3