Neurocognitive Inhibitory Control Ability Performance and Correlations with Biochemical Markers in Obese Women

Author:

Wen Huei-JhenORCID,Tsai Chia-LiangORCID

Abstract

Inhibitory control, the ability to suppress prepotent responses and resist irrelevant stimuli, is thought to play a critical role in the maintenance of obesity. However, electrophysiological performance related to different inhibitory control processes and their relationship with motor response inhibition and cognitive interference and potential biochemical mechanisms in middle-aged, obese women are as yet unclear. This work thus compared different neurocognitive Go/Nogo and Stroop task performance in healthy sedentary normal-weight and obese women, as well as their correlation with biochemical markers. Twenty-six healthy, sedentary obese women (obese group) and 26 age-matched (21–45 years old) normal-weight women (control group) were the participants, categorized by body mass index and percentage fat, as measured with dual-energy X-ray absorptiometry. They provided a fasting blood sample and performed two cognitive tasks (i.e., Go/Nogo and Stroop tasks) with concomitant electrophysiological recording. The N2 and P3 waveforms of event-related potential (ERP) were recorded. Although the between-group behavioral performance was comparable, the obese group relative to the control group showed significantly longer N2 latency and smaller P3 amplitude in the Stroop task and smaller N2 and P3 amplitudes in the Go/Nogo task. Significant inflammation response indices (e.g., CRP, leptin, adiponectin/leptin ratio) were observed in the obese group. The Nogo P3 amplitude was significantly correlated with the adiponectin/leptin ratio. These findings indicate that healthy obese women still exhibit deviant neurophysiological performance when performing Go/Nogo and Stroop tasks, where the adiponectin/leptin ratio could be one of the influencing factors for the deficit in neural processes of motor response inhibition.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3