Semi-Supervised Text Classification Framework: An Overview of Dengue Landscape Factors and Satellite Earth Observation

Author:

Li Zhichao,Gurgel HelenORCID,Dessay Nadine,Hu Luojia,Xu LeiORCID,Gong PengORCID

Abstract

In recent years there has been an increasing use of satellite Earth observation (EO) data in dengue research, in particular the identification of landscape factors affecting dengue transmission. Summarizing landscape factors and satellite EO data sources, and making the information public are helpful for guiding future research and improving health decision-making. In this case, a review of the literature would appear to be an appropriate tool. However, this is not an easy-to-use tool. The review process mainly includes defining the topic, searching, screening at both title/abstract and full-text levels and data extraction that needs consistent knowledge from experts and is time-consuming and labor intensive. In this context, this study integrates the review process, text scoring, active learning (AL) mechanism, and bidirectional long short-term memory (BiLSTM) networks, and proposes a semi-supervised text classification framework that enables the efficient and accurate selection of the relevant articles. Specifically, text scoring and BiLSTM-based active learning were used to replace the title/abstract screening and full-text screening, respectively, which greatly reduces the human workload. In this study, 101 relevant articles were selected from 4 bibliographic databases, and a catalogue of essential dengue landscape factors was identified and divided into four categories: land use (LU), land cover (LC), topography and continuous land surface features. Moreover, various satellite EO sensors and products used for identifying landscape factors were tabulated. Finally, possible future directions of applying satellite EO data in dengue research in terms of landscape patterns, satellite sensors and deep learning were proposed. The proposed semi-supervised text classification framework was successfully applied in research evidence synthesis that could be easily applied to other topics, particularly in an interdisciplinary context.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3