Usefulness in Developing an Optimal Training Program and Distinguishing between Performance Levels of the Athlete’s Body by Using of Thermal Imaging

Author:

Kasprzyk-Kucewicz TeresaORCID,Szurko Agnieszka,Stanek AgataORCID,Sieroń Karolina,Morawiec Tadeusz,Cholewka Armand

Abstract

The goal of the training is to enable the body to perform prolonged physical effort without reducing its effectiveness while maintaining the body’s homeostasis. Homeostasis is the ability of the system to maintain, in dynamic balance, the stability of the internal environment. Equally as important as monitoring the body’s thermoregulation phenomena during exercise seems to be the evaluation of these mechanisms after physical effort, when the athlete’s body returns to physiological homeostasis. Restoring homeostasis is an important factor in body regeneration and has a significant impact on preventing overtraining. In this work we present a training protocol using a rowing ergometer, which was planned to be carried out in a short time and which involves working the majority of the athlete’s muscles, allowing a full assessment of the body’s thermal parameters after stopping exercise and during the body’s return to thermal equilibrium and homeostasis. The significant differences between normalized mean body surface temperature obtained for the cyclist before the training period and strength group as well as before and 10 min after training were obtained. Such observation seems to bring indirectly some information about the sportsperson’s efficiency due to differences in body temperature in the first 10 min of training when sweat does not play a main role in surface temperature. Nearly 1 °C drop of mean body temperature has been measured due to the period of training. It is concluded that thermovision not only allows you to monitor changes in body temperature due to sports activity, but also allows you to determine which of the athletes has a high level of body efficiency. The average maximum body temperature of such an athlete is higher (32.5 °C) than that of an athlete who has not trained regularly (30.9 °C) and whose body probably requires further training.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference34 articles.

1. Fizjologia Wysiłku i Treningu Fizycznego;Górski,2011

2. Physics of the Human Body;Herman,2016

3. Periodization–Theory and Methodology of Training;Bompa,2019

4. The Athlete’s Guide to Recovery: Rest, Relax, and Restore for Peak Performance;Rountree,2009

5. The role of training intensity in resistance exercise over- training and overreaching;Fry,1998

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3