A Proposed Waterpipe Emissions Topography Protocol Reflecting Natural Environment User Behaviour

Author:

Hensel Edward C.ORCID,Sarles Samantha Emma,al-Olayan Abdulaziz,DiFrancesco A. Gary,Jayasekera Shehan,Eddingsaas Nathan C.,Robinson Risa J.ORCID

Abstract

Usage of waterpipes is growing in popularity around the world. Limited waterpipe natural environment topography data reduces the ability of the research community to accurately assess emissions and user exposure to toxicants. A portable ergonomic waterpipe monitor was provided to study participants to use every time they smoked their own waterpipe during a one-week monitoring period in conjunction with their own choice shisha tobacco. Users provided demographic information and logged their product use to supplement electronic monitor data. A total of 44 prospective study participants were invited to an intake appointment following an on-line pre-screening survey. Of these, 34 individuals were invited to participate in the study and data for 24 individuals who completed all aspects of the 1-week monitoring protocol is presented. 7493 puffs were observed during 74 waterpipe sessions accumulating over 48 h of waterpipe usage. The 95% CI on mean puff flow rate, duration, volume and interval are presented, yielding grand means of 243 [mL/s], 3.5 [s], 850 [mL], and 28 [s] respectively. The middle 95% of puff flow rates ranged between 62 to 408 [mL/s], durations from 0.8 to 6.8 [s], and puff volumes from 87 to 1762 [mL]. A waterpipe emissions topography protocol consisting of 13 flow conditions is proposed to reflect 93% of the observed range of puff flow rate, puff duration and puff volume with representative inter-puff interval, cumulative session time and aerosol volumes.

Funder

U.S. Food and Drug Administration

National Institutes of Health

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3