Biosurfactant Production in Sub-Oxic Conditions Detected in Hydrocarbon-Degrading Isolates from Marine and Estuarine Sediments

Author:

Domingues Patrícia M.ORCID,Oliveira VanessaORCID,Serafim Luísa SeuanesORCID,Gomes Newton C. M.,Cunha ÂngelaORCID

Abstract

Hydrocarbon bioremediation in anoxic sediment layers is still challenging not only because it involves metabolic pathways with lower energy yields but also because the production of biosurfactants that contribute to the dispersion of the pollutant is limited by oxygen availability. This work aims at screening populations of culturable hydrocarbonoclastic and biosurfactant (BSF) producing bacteria from deep sub-seafloor sediments (mud volcanos from Gulf of Cadiz) and estuarine sub-surface sediments (Ria de Aveiro) for strains with potential to operate in sub-oxic conditions. Isolates were retrieved from anaerobic selective cultures in which crude oil was provided as sole carbon source and different supplements were provided as electron acceptors. Twelve representative isolates were obtained from selective cultures with deep-sea and estuary sediments, six from each. These were identified by sequencing of 16S rRNA gene fragments belonging to Pseudomonas, Bacillus, Ochrobactrum, Brevundimonas, Psychrobacter, Staphylococcus, Marinobacter and Curtobacterium genera. BSF production by the isolates was tested by atomized oil assay, surface tension measurement and determination of the emulsification index. All isolates were able to produce BSFs under aerobic and anaerobic conditions, except for isolate DS27 which only produced BSF under aerobic conditions. These isolates presented potential to be applied in bioremediation or microbial enhanced oil recovery strategies under conditions of oxygen limitation. For the first time, members of Ochrobactrum, Brevundimonas, Psychrobacter, Staphylococcus, Marinobacter and Curtobacterium genera are described as anaerobic producers of BSFs.

Funder

Centro de Estudos Ambientais e Marinhos, Universidade de Aveiro

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3