Abstract
Impact of land use and land cover change on soil erosion is still imperfectly understood, especially in northeastern China where severe soil erosion has occurred since the 1950s. It is important to identify temporal changes of soil erosion for the black soil region at different spatial scales. In the present study, potential soil erosion in northeastern China was estimated based on the Revised Universal Loss Equation by integrating satellite images, and the variability of soil erosion at different spatial scales following land use changes in 1980, 1990, 2000, 2010, and 2017 was analyzed. The regionally spatial patterns of soil loss coincided with the topography, rainfall erosivity, soil erodibility, and use patterns, and around 45% of soil loss came from arable land. Regionally, soil erosion rates increased from 1980 to 2010 and decreased from 2010 to 2017, ranging from 3.91 to 4.45 Mg ha−1 yr−1 with an average of 4.22 Mg ha−1 yr−1 in 1980–2017. Areas with a rate of soil erosion less than 1.41 Mg ha−1 yr−1 decreased from 1980 to 2010 and increased from 2010 to 2017, and the opposite changing patterns occurred in higher erosion classes. Arable land continuously increased at the expense of forest in the high-elevation and steep-slope areas from 1980 to 2010, and decreased from 2010 to 2017, resulting in increased areas with erosion rates higher than 7.05 Mg ha−1 yr−1. At a provincial scale, Liaoning Province experienced the highest soil erosion rate of 9.43 Mg ha−1 yr−1, followed by Jilin Province, the eastern Inner Mongolia Autonomous Region, and Heilongjiang Province. At a county scale, around 75% of the counties had a soil erosion rate higher than the tolerance level. The county numbers with higher erosion rate increased in 1980–2010 and decreased in 2010–2017, resulting from the sprawl and withdrawal of arable land.
Funder
the National Natural Science Foundation of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献