Assessment of the Nutrient Removal Potential of Floating Native and Exotic Aquatic Macrophytes Cultured in Swine Manure Wastewater

Author:

Xu Lei,Cheng Siyu,Zhuang PingORCID,Xie Dongsheng,Li Shiyu,Liu Dongming,Li Zhian,Wang FaguoORCID,Xing Fuwu

Abstract

Although eutrophication and biological invasion have caused serious harm to aquatic ecosystems, exotic and even invasive plants have been used extensively in phytoremediation water systems in China. To identify native aquatic plants with excellent water restoration potential, two representative native floating aquatic plants from Guangdong Province, namely Ludwigia adscendens (PL) and Trapa natans (PT), were selected, with Eichhornia crassipes as a control, to study their growth status, adaptability, and nutrient removal potentials in swine manure wastewater. The results demonstrated that the two native plants offered greater advantages than E. crassipes in water restoration. Within 60 days, PL and PT exhibited excellent growth statuses, and their net biomass growth rates were 539.8% and 385.9%, respectively, but the E. crassipes decayed and died with an increasing HRT (hydraulic retention time). The PL and PT could adjust the pH of the wastewater, improve the dissolved oxygen and oxidation-reduction potential, and reduce the electrical conductivity value. The removal rates of NH4+–N, NO3−–N, NO2−–N, total nitrogen, total phosphorus, chemical oxygen demand (COD), and Chl-a in the PL group reached 98.67%, 64.83%, 26.35%, 79.30%, 95.90%, 69.62%, and 92.23%, respectively; those in the PT group reached 99.47%, 95.83%, 85.17%, 83.73%, 88.72%, 75.06%, and 91.55%, respectively. The absorption contribution rates of total nitrogen (TN) and total phosphorus (TP) in the PL group were 40.6% and 43.5%, respectively, while those in the PT group were 36.9% and 34.5%, respectively. The results indicated that L. adscendens and T. natans are both promising aquatic plants for application to the restoration of swine manure wastewater in subtropical areas.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3