A Multiscale Evaluation of the Coupling Relationship between Urban Land and Carbon Emissions: A Case Study of Chongqing, China

Author:

Li Chuanlong,Li Yuanqing,Shi Kaifang,Yang Qingyuan

Abstract

Exploring the coupling relationship between urban land and carbon emissions (CE) is one of the important premises for coordinating the urban development and the ecological environment. Due to the influence of the scale effect, a systematic evaluation of the CE at different scales will help to develop more reasonable strategies for low-carbon urban planning. However, corresponding studies are still lacking. Hence, two administrative scales (e.g., region and county) in Chongqing were selected as experimental objects to compare and analyze the CE at different scales using the spatiotemporal coupling and coupling coordination models. The results show that urban land and carbon emissions presented a significant growth trend in Chongqing at different scales from 2000 to 2015. The strength of the spatiotemporal coupling relationship between urban land and total carbon emissions gradually increased with increasing scale. At the regional scale, the high coupling coordination between urban land and total carbon emissions was mainly concentrated in the urban functional development region. Additionally, the high coupling coordination between urban land and carbon emission intensity (OI) was still located in the counties within the metropolitan region of Chongqing, but the low OI was mainly distributed in the counties in the northeastern and southeastern regions of Chongqing at the county level. This study illustrates the multiscale trend of CE and suggests differentiated urban land and carbon emission reduction policies for controlling urban land sprawl and reducing carbon emissions.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3