Abstract
Mounting evidence reveals considerable racial inequities in coronavirus disease 2019 (COVID-19) outcomes in the United States (US). Area-level racial bias has been associated with multiple adverse health outcomes, but its association with COVID-19 is yet unexplored. Combining county-level data from Project Implicit on implicit and explicit anti-Black bias among non-Hispanic Whites, Johns Hopkins Coronavirus Resource Center, and The New York Times, we used adjusted linear regressions to estimate overall COVID-19 incidence and mortality rates through 01 July 2020, Black and White incidence rates through 28 May 2020, and Black–White incidence rate gaps on average area-level implicit and explicit racial bias. Across 2994 counties, the average COVID-19 mortality rate (standard deviation) was 1.7/10,000 people (3.3) and average cumulative COVID-19 incidence rate was 52.1/10,000 (77.2). Higher racial bias was associated with higher overall mortality rates (per 1 standard deviation higher implicit bias b = 0.65/10,000 (95% confidence interval: 0.39, 0.91); explicit bias b = 0.49/10,000 (0.27, 0.70)) and higher overall incidence (implicit bias b = 8.42/10,000 (4.64, 12.20); explicit bias b = 8.83/10,000 (5.32, 12.35)). In 957 counties with race-specific data, higher racial bias predicted higher White and Black incidence rates, and larger Black–White incidence rate gaps. Anti-Black bias among Whites predicts worse COVID-19 outcomes and greater inequities. Area-level interventions may ameliorate health inequities.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference59 articles.
1. Revealing the Unequal Burden of COVID-19 by Income, Race/Ethnicity, and Household Crowding: US County Versus Zip Code Analyses
2. Racial Data Dashboard
https://covidtracking.com/race/dashboard
3. Global Map
https://coronavirus.jhu.edu/map.html
4. COVID-19 and the unequal surge in mortality rates in Massachusetts, by city/town and ZIP Code measures of poverty, household crowding, race/ethnicity, and racialized economic segregation;Chen,2020