A Study of Using Natural Sorbent to Reduce Iron Cations from Aqueous Solutions

Author:

Pandová Iveta,Rimár Miroslav,Panda Anton,Valíček Jan,Kušnerová Milena,Harničárová Marta

Abstract

Iron is an essential trace element, but at high doses, this element may pose a health risk. Wastewater from iron ore mining, steel production, and metal processing, among other heavy metals, also contains high concentrations of iron (Fe3+). The use of sorption on natural materials is a potential alternative to conventional methods for removing iron ions, also because of low cost. The methods presented in this article are based on the study of kinetic properties and the acquisition of adsorption isotherms, which are one of the most important characteristics of adsorption mechanisms. The course of sorption is analyzed according to the Freundlich sorption isotherm model. Isotherm parameters are evaluated using experimental results of ferric cation sorption. The results presented relate to the investigation of natural zeolite-clinoptilolite as a ferric cation sorbent, providing a measurement of the sorption kinetics as well as the observed sorption parameters of iron cations from aqueous media. The optimal time for equilibrium in the adsorption system is determined from the kinetic dependencies. The dependence of the achieved equilibrium concentration on the initial concentration of the solution was also expressed, both graphically and analytically. The new prediction model was compared with the traditional Freundlich model. Finally, adsorption isotherms tested under laboratory conditions for a practical application can be recommended for the preliminary examination of the possible technological use of natural zeolite in the wastewater treatment process.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3