Subsystem Hazard Analysis on an Offshore Waste Disposal Facility

Author:

Oh Sang-HoORCID,Kim Seung-Woo

Abstract

Offshore waste disposal facilities are unique marine infrastructures that exist only in a few countries. Although the existing facilities in Japan and Singapore have been successfully operated in general, there have been no investigations on the probable hazards they pose on the environment. Considering this, conceivable hazards were identified for an offshore waste disposal facility that has recently been proposed in Korea. The causes and consequences of each of the identified hazards were analyzed to seek countermeasures for reducing the environmental impact in advance. Hazards of waste disposal facilities can be classified according to their design, construction, maintenance, operation, and site utilization. For these areas, except for site utilization, subsystem hazard analysis was performed. In the initial assessment, seven elements were found to be in the extreme risk zone, 30 were in the high-risk zone, and six were in the moderate-risk zone. After applying the alternative mitigation methods, the final risk assessment resulted in 27 moderate-risk and 16 low-risk elements. Therefore, it was confirmed that the potential risks of the proposed offshore waste disposal facility were within acceptable ranges.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference29 articles.

1. Introduction on offshore waste landfill and potential sites;Oh;KSCE J. Civ. Eng.,2012

2. Current Status of Waste Management in Japan

3. Waste management and recycling trends in Japan

4. The practice and challenges of solid waste management in Singapore

5. Past, present, and future of MSW landfills in Japan;Tanaka;J. Mater. Cycl. Waste Manag.,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance evaluation of Ocean Thermal Energy Conversion(OTEC) stabilization based on risk analysis;Journal of Advanced Marine Engineering and Technology;2023-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3