Geographical Patterns of Algal Communities Associated with Different Urban Lakes in China

Author:

Chen Shengnan,He Huiyan,Zong Rongrong,Liu Kaiwen,Miao Yutian,Yan Miaomiao,Xu Lei

Abstract

Urban lakes play an important role in drainage and water storage, regulating urban microclimate conditions, supplying groundwater, and meeting citizens’ recreational needs. However, geographical patterns of algal communities associated with urban lakes from a large scale are still unclear. In the present work, the geographical variation of algal communities and water quality parameters in different urban lakes in China were determined. The water quality parameters were examined in the samples collected from north, central, south, and coastal economic zones in China. The results suggested that significant differences in water quality were observed among different geographical distribution of urban lakes. The highest total phosphorus (TP)(0.21 mg/L) and total nitrogen (TN) (3.84 mg/L) concentrations were found in XinHaiHu (XHH) lake, it also showed highest the nitrate nitrogen (NO3−-N) (0.39 mg/L),total organic carbon(TOC) (9.77 mg/L), and COD Mn (9.01 mg/L) concentrations among all samples. Environmental and geographic factors also cause large differences in algal cell concentration in different urban lakes, which ranged from 4700 × 104 to 247,800 × 104cell/L. Through light microscopy, 6 phyla were identified, which includes Chlorophyta, Bacillariophyta, Cyanophyta, Dinophyta, Euglenophyta, and Cryptophyta. Meanwhile, the heat map with the total 63 algal community composition at the genus level profile different urban lakes community structures are clearly distinguishable. Further analyses showed that the dominant genera were Limnothrix sp., Synedra sp., Cyclotella sp., Nephrocytium sp., Melosira sp., and Scenedesmus sp. among all samples. The integrated network analysis indicated that the highly connected taxa (hub) were Fragilaria sp., Scenedesmus sp., and Stephanodiscus sp. The water quality parameters of NO3−-N and NH4+-N had significant impacts on the structural composition of the algal community. Additionally, RDA further revealed distinct algal communities in the different urban lakes, and were influenced by NO2−-N, Fe, and algal cell concentrations. In summary, these results demonstrate that the pattern of algal communities are highly correlated with geographic location and water quality on a large scale, and these results also give us further understanding of the complex algal communities and effectively managing eutrophication of urban lakes.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3