A Social Network Analysis of Tweets Related to Masks during the COVID-19 Pandemic

Author:

Ahmed WasimORCID,Vidal-Alaball JosepORCID,Lopez Segui FrancescORCID,Moreno-Sánchez Pedro A.ORCID

Abstract

Background: High compliance in wearing a mask is a crucial factor for stopping the transmission of COVID-19. Since the beginning of the pandemic, social media has been a key communication channel for citizens. This study focused on analyzing content from Twitter related to masks during the COVID-19 pandemic. Methods: Twitter data were collected using the keyword “mask” from 27 June 2020 to 4 July 2020. The total number of tweets gathered were n = 452,430. A systematic random sample of 1% (n = 4525) of tweets was analyzed using social network analysis. NodeXL (Social Media Research Foundation, California, CA, USA) was used to identify users ranked influential by betweenness centrality and was used to identify key hashtags and content. Results: The overall shape of the network resembled a community network because there was a range of users conversing amongst each other in different clusters. It was found that a range of accounts were influential and/or mentioned within the network. These ranged from ordinary citizens, politicians, and popular culture figures. The most common theme and popular hashtags to emerge from the data encouraged the public to wear masks. Conclusion: Towards the end of June 2020, Twitter was utilized by the public to encourage others to wear masks and discussions around masks included a wide range of users.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference22 articles.

1. A new coronavirus associated with human respiratory disease in China

2. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19)

3. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

4. Coronavirus Disease (COVID-19). Situation Report-176,2020

5. Covid-19: should the public wear face masks?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3