A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China

Author:

Chen JunfeiORCID,Li Qian,Wang Huimin,Deng Menghua

Abstract

The Yangtze River Delta (YRD) is one of the most developed regions in China. This is also a flood-prone area where flood disasters are frequently experienced; the situations between the people–land nexus and the people–water nexus are very complicated. Therefore, the accurate assessment of flood risk is of great significance to regional development. The paper took the YRD urban agglomeration as the research case. The driving force, pressure, state, impact and response (DPSIR) conceptual framework was established to analyze the indexes of flood disasters. The random forest (RF) algorithm was used to screen important indexes of floods risk, and a risk assessment model based on the radial basis function (RBF) neural network was constructed to evaluate the flood risk level in this region from 2009 to 2018. The risk map showed the I-V level of flood risk in the YRD urban agglomeration from 2016 to 2018 by using the geographic information system (GIS). Further analysis indicated that the indexes such as flood season rainfall, urban impervious area ratio, gross domestic product (GDP) per square kilometer of land, water area ratio, population density and emergency rescue capacity of public administration departments have important influence on flood risk. The flood risk has been increasing in the YRD urban agglomeration during the past ten years under the urbanization background, and economic development status showed a significant positive correlation with flood risks. In addition, there were serious differences in the rising rate of flood risks and the status quo among provinces. There are still a few cities that have stabilized at a better flood-risk level through urban flood control measures from 2016 to 2018. These results were basically in line with the actual situation, which validated the effectiveness of the model. Finally, countermeasures and suggestions for reducing the urban flood risk in the YRD region were proposed, in order to provide decision support for flood control, disaster reduction and emergency management in the YRD region.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3