Network-Based Genetic Profiling Reveals Cellular Pathway Differences Between Follicular Thyroid Carcinoma and Follicular Thyroid Adenoma

Author:

Hossain Md. Ali,Asa Tania Akter,Rahman Md. Mijanur,Uddin ShahadatORCID,Moustafa Ahmed A.,Quinn Julian M. W.,Moni Mohammad AliORCID

Abstract

Molecular mechanisms underlying the pathogenesis and progression of malignant thyroid cancers, such as follicular thyroid carcinomas (FTCs), and how these differ from benign thyroid lesions, are poorly understood. In this study, we employed network-based integrative analyses of FTC and benign follicular thyroid adenoma (FTA) lesion transcriptomes to identify key genes and pathways that differ between them. We first analysed a microarray gene expression dataset (Gene Expression Omnibus GSE82208, n = 52) obtained from FTC and FTA tissues to identify differentially expressed genes (DEGs). Pathway analyses of these DEGs were then performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) resources to identify potentially important pathways, and protein-protein interactions (PPIs) were examined to identify pathway hub genes. Our data analysis identified 598 DEGs, 133 genes with higher and 465 genes with lower expression in FTCs. We identified four significant pathways (one carbon pool by folate, p53 signalling, progesterone-mediated oocyte maturation signalling, and cell cycle pathways) connected to DEGs with high FTC expression; eight pathways were connected to DEGs with lower relative FTC expression. Ten GO groups were significantly connected with FTC-high expression DEGs and 80 with low-FTC expression DEGs. PPI analysis then identified 12 potential hub genes based on degree and betweenness centrality; namely, TOP2A, JUN, EGFR, CDK1, FOS, CDKN3, EZH2, TYMS, PBK, CDH1, UBE2C, and CCNB2. Moreover, transcription factors (TFs) were identified that may underlie gene expression differences observed between FTC and FTA, including FOXC1, GATA2, YY1, FOXL1, E2F1, NFIC, SRF, TFAP2A, HINFP, and CREB1. We also identified microRNA (miRNAs) that may also affect transcript levels of DEGs; these included hsa-mir-335-5p, -26b-5p, -124-3p, -16-5p, -192-5p, -1-3p, -17-5p, -92a-3p, -215-5p, and -20a-5p. Thus, our study identified DEGs, molecular pathways, TFs, and miRNAs that reflect molecular mechanisms that differ between FTC and benign FTA. Given the general similarities of these lesions and common tissue origin, some of these differences may reflect malignant progression potential, and include useful candidate biomarkers for FTC and identifying factors important for FTC pathogenesis.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference62 articles.

1. Cancer Statistics in Korea: Incidence, Mortality, Survival and Prevalence in 2010

2. Nethttps://www.cancer.net/cancer-types/thyroid-cancer/statistics

3. TCGDB: A compendium of molecular signatures of thyroid cancer and disorders;Bansal;J. Cancer Sci. Ther.,2015

4. Diagnosis and treatment of patients with thyroid cancer;Nguyen;Am. Health Drug Benefits,2015

5. A system biology approach reveals cellular pathway differences between follicular thyroid carcinoma and follicular thyroid adenoma

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3