Abstract
The time to exhaustion (tlim) at the respiratory compensation point (RCP) and whether a physiological steady state is observed at this workload remains unknown. Thus, this study analyzed tlim at the power output eliciting the RCP (tlim at RCP), the oxygen uptake (VO2) response to this effort, and the influence of endurance fitness. Sixty male recreational cyclists (peak oxygen uptake [VO2peak] 40–60 mL∙kg∙min−1) performed an incremental test to determine the RCP, VO2peak, and maximal aerobic power (MAP). They also performed constant-load tests to determine the tlim at RCP and tlim at MAP. Participants were divided based on their VO2peak into a low-performance group (LP, n = 30) and a high-performance group (HP, n = 30). The tlim at RCP averaged 20 min 32 s ± 5 min 42 s, with a high between-subject variability (coefficient of variation 28%) but with no differences between groups (p = 0.788, effect size = 0.06). No consistent relationships were found between the tlim at RCP and the different fitness markers analyzed (RCP, power output (PO) at RCP, VO2peak, MAP, or tlim at MAP; all p > 0.05). VO2 remained steady overall during the tlim test, although a VO2 slow component (i.e., an increase in VO2 >200 mL·min−1 from the third min to the end of the tests) was present in 33% and 40% of the participants in HP and LP, respectively. In summary, the PO at RCP could be maintained for about 20 min. However, there was a high between-subject variability in both the tlim and in the VO2 response to this effort that seemed to be independent of fitness level, which raises concerns on the suitability of this test for fitness assessment.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献