Time to Exhaustion at the Respiratory Compensation Point in Recreational Cyclists

Author:

Moral-González Susana,González-Sánchez Javier,Valenzuela Pedro L.ORCID,García-Merino Sonia,Barbado Carlos,Lucia Alejandro,Foster Carl,Barranco-Gil David

Abstract

The time to exhaustion (tlim) at the respiratory compensation point (RCP) and whether a physiological steady state is observed at this workload remains unknown. Thus, this study analyzed tlim at the power output eliciting the RCP (tlim at RCP), the oxygen uptake (VO2) response to this effort, and the influence of endurance fitness. Sixty male recreational cyclists (peak oxygen uptake [VO2peak] 40–60 mL∙kg∙min−1) performed an incremental test to determine the RCP, VO2peak, and maximal aerobic power (MAP). They also performed constant-load tests to determine the tlim at RCP and tlim at MAP. Participants were divided based on their VO2peak into a low-performance group (LP, n = 30) and a high-performance group (HP, n = 30). The tlim at RCP averaged 20 min 32 s ± 5 min 42 s, with a high between-subject variability (coefficient of variation 28%) but with no differences between groups (p = 0.788, effect size = 0.06). No consistent relationships were found between the tlim at RCP and the different fitness markers analyzed (RCP, power output (PO) at RCP, VO2peak, MAP, or tlim at MAP; all p > 0.05). VO2 remained steady overall during the tlim test, although a VO2 slow component (i.e., an increase in VO2 >200 mL·min−1 from the third min to the end of the tests) was present in 33% and 40% of the participants in HP and LP, respectively. In summary, the PO at RCP could be maintained for about 20 min. However, there was a high between-subject variability in both the tlim and in the VO2 response to this effort that seemed to be independent of fitness level, which raises concerns on the suitability of this test for fitness assessment.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3