Improving the Named Entity Recognition of Chinese Electronic Medical Records by Combining Domain Dictionary and Rules

Author:

Chen Xianglong,Ouyang Chunping,Liu Yongbin,Bu YiORCID

Abstract

Electronic medical records are an integral part of medical texts. Entity recognition of electronic medical records has triggered many studies that propose many entity extraction methods. In this paper, an entity extraction model is proposed to extract entities from Chinese Electronic Medical Records (CEMR). In the input layer of the model, we use word embedding and dictionary features embedding as input vectors, where word embedding consists of a character representation and a word representation. Then, the input vectors are fed to the bidirectional long short-term memory to capture contextual features. Finally, a conditional random field is employed to capture dependencies between neighboring tags. We performed experiments on body classification task, and the F1 values reached 90.65%. We also performed experiments on anatomic region recognition task, and the F1 values reached 93.89%. On both tasks, our model had higher performance than state-of-the-art models, such as Bi-LSTM-CRF, Bi-LSTM-Attention, and Vote. Through experiments, our model has a good effect when dealing with small frequency entities and unknown entities; with a small training dataset, our method showed 2–4% improvement on F1 value compared to the basic Bi-LSTM-CRF models. Additionally, on anatomic region recognition task, besides using our proposed entity extraction model, 12 rules we designed and domain dictionary were adopted. Then, in this task, the weighted F1 value of the three specific entities extraction reached 84.36%.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3