Abstract
Escalator accidents not only happen frequently but also have cascading effects. The purpose of this study is to block the formation of cascading accident networks by identifying and preventing critical hazards. A modified five-step task-driven method (FTDM) is proposed to break down passenger-related cascading escalator accidents. Three complex network parameters in complex network theory are utilized to identify critical and non-critical Risk Passenger Behavior (RPB) hazards and Other Hazards related with Risk Passenger Behavior (OH-RPB) in accident chains. A total of 327 accidents that occurred in the Beijing metro rail transit (MRT) stations were used for case studies. The results are consistent in critical and non-critical RPB and OH-RPB and prove that through combination of FTDM accident investigation model and complex network analysis method, critical and non-critical RPB and OH-RPB in a complicated cascading hazards network can be identified. Prevention of critical RPB can block the formation of cascading accident networks. The method not only can be used by safety manager to make the corresponding preventive measures according to the results in daily management but also the findings can guide the allocation of limited preventive resources to critical hazards rather than non-critical hazards. Moreover, the defects of management plan and product design can be re-examined according to the research results.
Funder
National Natural Science Foundation of China
Ministry of Science and Technology of the People's Republic of China
Natural Science Foundation of Beijing Municipality
Humanities and Social Science Fund of Ministry of Education of China
Fundamental Research Funds for the Central Universities
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献