Critical Hazards Identification and Prevention of Cascading Escalator Accidents at Metro Rail Transit Stations

Author:

Wang ZhiruORCID,Bhamra Ran S.,Wang Min,Xie Han,Yang Lili

Abstract

Escalator accidents not only happen frequently but also have cascading effects. The purpose of this study is to block the formation of cascading accident networks by identifying and preventing critical hazards. A modified five-step task-driven method (FTDM) is proposed to break down passenger-related cascading escalator accidents. Three complex network parameters in complex network theory are utilized to identify critical and non-critical Risk Passenger Behavior (RPB) hazards and Other Hazards related with Risk Passenger Behavior (OH-RPB) in accident chains. A total of 327 accidents that occurred in the Beijing metro rail transit (MRT) stations were used for case studies. The results are consistent in critical and non-critical RPB and OH-RPB and prove that through combination of FTDM accident investigation model and complex network analysis method, critical and non-critical RPB and OH-RPB in a complicated cascading hazards network can be identified. Prevention of critical RPB can block the formation of cascading accident networks. The method not only can be used by safety manager to make the corresponding preventive measures according to the results in daily management but also the findings can guide the allocation of limited preventive resources to critical hazards rather than non-critical hazards. Moreover, the defects of management plan and product design can be re-examined according to the research results.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Natural Science Foundation of Beijing Municipality

Humanities and Social Science Fund of Ministry of Education of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3