Seed Biopriming with Microbial Inoculant Triggers Local and Systemic Defense Responses against Rhizoctonia solani Causing Banded Leaf and Sheath Blight in Maize (Zea mays L.)

Author:

Singh ShailendraORCID,Singh Udai B.ORCID,Malviya Deepti,Paul SurinderORCID,Sahu Pramod KumarORCID,Trivedi Mala,Paul DibyORCID,Saxena Anil Kumar

Abstract

Plant growth promoting rhizobacteria Pseudomonas aeruginosa strain MF-30 isolated from maize rhizosphere was characterized for several plant growth stimulating attributes. The strain MF-30 was also evaluated for antifungal properties against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.) under in vitro conditions and was found to have higher mycelial growth suppression in the culture suspension (67.41%) followed by volatile organic compounds (62.66%) and crude extract (51.20%) in a dual plate assay. The endophytic and epiphytic colonization ability was tested using Green Fluorescent Protein (GFP)-tagging. Visualization through confocal scanning laser microscope clearly indicated that strain MF-30 colonizes the root and foliar parts of the plants. Further, the effects of seed bio-priming with P. aeruginosa MF-30 was evaluated in the induction and bioaccumulation of defense-related biomolecules, enzymes, natural antioxidants, and other changes in maize under pot trial. This not only provided protection from R. solani but also ensured growth promotion under pathogenic stress conditions in maize. The maximum concentration of hydrogen peroxide (H2O2) was reported in the root and shoot of the plants treated with R. solani alone (8.47 and 17.50 mmol mg−1 protein, respectively) compared to bioagent, P. aeruginosa MF-30 bio-primed plants (3.49 and 7.50 mmol mg−1 protein, respectively). Effects on total soluble sugar content, total protein, and total proline were also found to enhanced significantly due to inoculation of P. aeruginosa MF-30. The activities of anti-oxidative defense enzymes phenylalanine ammonia lyase (PAL), ascorbate peroxidase, peroxidase, superoxide dismutase, and catalase increased significantly in the plants bio-primed with P. aeruginosa MF-30 and subsequent foliar spray of culture suspension of MF-30 compared to pathogen alone inoculated plants. qRT-PCR analysis revealed that seed bio-priming and foliar application of P. aeruginosa MF-30 significantly increased the expression of PR-1 and PR-10 genes with the simultaneous decrease in the disease severity and lesion length in the maize plants under pathogenic stress conditions. A significant enhancement of shoot and root biomass was recorded in MF-30 bio-primed plants as compared to untreated control (p < 0.05). Significant increase in plant growth and antioxidant content, as well as decreased disease severity in the P. aeruginosa MF-30 bio-primed plants, suggested the possibility of an eco-friendly and economical means of achieving antioxidants-rich, healthier maize plants.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference102 articles.

1. Diseases of maize new to India;Payak;Indian Phytopathol. Soc. Bull.,1966

2. Correlation studies between incidence of banded sclerotial disease and ear yield in maize;Thakur;Indian J. Mycol. Plant Pathol.,1973

3. Crop Losses in Corn Induced byRhizoctonia solaniAG-2-2 and Nematodes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3