Time-Cumulative Toxicity of Neonicotinoids: Experimental Evidence and Implications for Environmental Risk Assessments

Author:

Sánchez-Bayo Francisco,Tennekes Henk A.

Abstract

Our mechanistic understanding of the toxicity of chemicals that target biochemical and/or physiological pathways, such as pesticides and medical drugs is that they do so by binding to specific molecules. The nature of the latter molecules (e.g., enzymes, receptors, DNA, proteins, etc.) and the strength of the binding to such chemicals elicit a toxic effect in organisms, which magnitude depends on the doses exposed to within a given timeframe. While dose and time of exposure are critical factors determining the toxicity of pesticides, different types of chemicals behave differently. Experimental evidence demonstrates that the toxicity of neonicotinoids increases with exposure time as much as with the dose, and therefore it has been described as time-cumulative toxicity. Examples for aquatic and terrestrial organisms are shown here. This pattern of toxicity, also found among carcinogenic compounds and other toxicants, has been ignored in ecotoxicology and risk assessments for a long time. The implications of the time-cumulative toxicity of neonicotinoids on non-target organisms of aquatic and terrestrial environments are far reaching. Firstly, neonicotinoids are incompatible with integrated pest management (IPM) approaches and secondly regulatory assessments for this class of compounds cannot be based solely on exposure doses but need also to take into consideration the time factor.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3