Implementation of IoT-Based Air Quality Monitoring System for Investigating Particulate Matter (PM10) in Subway Tunnels

Author:

Jo Jun HoORCID,Jo ByungWanORCID,Kim Jung Hoon,Choi Ian

Abstract

Air quality monitoring for subway tunnels in South Korea is a topic of great interest because more than 8 million passengers per day use the subway, which has a concentration of particulate matter (PM10) greater than that of above ground. In this paper, an Internet of Things (IoT)-based air quality monitoring system, consisting of an air quality measurement device called Smart-Air, an IoT gateway, and a cloud computing web server, is presented to monitor the concentration of PM10 in subway tunnels. The goal of the system is to efficiently monitor air quality at any time and from anywhere by combining IoT and cloud computing technologies. This system was successfully implemented in Incheon’s subway tunnels to investigate levels of PM10. The concentration of particulate matter was greatest between the morning and afternoon rush hours. In addition, the residence time of PM10 increased as the depth of the monitoring location increased. During the experimentation period, the South Korean government implemented an air quality management system. An analysis was performed to follow up after implementation and assess how the change improved conditions. Based on the experiments, the system was efficient and effective at monitoring particulate matter for improving air quality in subway tunnels.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An overview of artificial intelligence in subway indoor air quality prediction and control;Process Safety and Environmental Protection;2023-10

2. Modeling the concentration of suspended particles by fuzzy inference system (FIS) and adaptive neuro-fuzzy inference system (ANFIS) techniques: A case study in the metro stations;Environmental Health Engineering and Management;2023-08-20

3. A Low-cost IoT Mobile System for Air Quality Monitoring in Developing Countries, a Study Case in El Salvador;2023 International Conference on Smart Applications, Communications and Networking (SmartNets);2023-07-25

4. A review on characteristics and mitigation strategies of indoor air quality in underground subway stations;Science of The Total Environment;2023-04

5. IoT based Air Pollution Monitoring System;2023 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE);2023-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3