Development of a Prediction Model for Demolition Waste Generation Using a Random Forest Algorithm Based on Small DataSets

Author:

Cha Gi-WookORCID,Moon Hyeun Jun,Kim Young-Min,Hong Won-Hwa,Hwang Jung-Ha,Park Won-JunORCID,Kim Young-Chan

Abstract

Recently, artificial intelligence (AI) technologies have been employed to predict construction and demolition (C&D) waste generation. However, most studies have used machine learning models with continuous data input variables, applying algorithms, such as artificial neural networks, adaptive neuro-fuzzy inference systems, support vector machines, linear regression analysis, decision trees, and genetic algorithms. Therefore, machine learning algorithms may not perform as well when applied to categorical data. This article uses machine learning algorithms to predict C&D waste generation from a dataset, as a way to improve the accuracy of waste management in C&D facilities. These datasets include categorical (e.g., region, building structure, building use, wall material, and roofing material), and continuous data (particularly, gloss floor area), and a random forest (RF) algorithm was used. Results indicate that RF is an adequate machine learning algorithm for a small dataset consisting of categorical data, and even with a small dataset, an adequate prediction model can be developed. Despite the small dataset, the predictive performance according to the demolition waste (DW) type was R (Pearson’s correlation coefficient) = 0.691–0.871, R2 (coefficient of determination) = 0.554–0.800, showing stable prediction performance. High prediction performance was observed using three (for mortar), five (for other DW types), or six (for concrete) input variables. This study is significant because the proposed RF model can predict DW generation using a small amount of data. Additionally, it demonstrates the possibility of applying AI to multi-purpose DW management.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3